The following technical discussion is part of an occasional series showcasing the ISA Mentor Program, authored by Greg McMillan, industry consultant, author of numerous process control books, 2010 ISA Life Achievement Award recipient and retired Senior Fellow from Solutia Inc. (now Eastman Chemical). Greg will be posting questions and responses from the ISA Mentor Program, with contributions from program participants.
In the ISA Mentor Program, I am providing guidance for extremely talented individuals from countries such as Argentina, Brazil, Malaysia, Mexico, Saudi Arabia, and the USA. This question comes from Angela Valdes.
The Industrial Internet of Things (IIoT) is the hot topic as seen in the many feature articles published. The much greater availability of data is hoped to provide the knowledge needed to sustain and improve plant safety, reliability and performance. Here we look at what are some of the practical issues and resources in achieving the expected IIoT benefits.
Angela Valdes is a recently added resource in the ISA Mentor Program. Angela is the automation manager of the Toronto office for SNC-Lavalin. She has over 12 years of experience in project leadership and execution, framed under PMI, lean, agile and stage-gate methodologies. Angela seeks to apply her knowledge in process control and automation in different industries such as pharmaceutical, food and beverage, consumer packaged products and chemicals.
Angela Valdes' question
What skill sets and ISA standards shall I start building/referencing in order to grow in the IIoT space and work field?
Nick Sands’ answer
The ISA Communication Division is forming a technical interest group in IIoT, and also sponsors an IIoT/smart manufacturing LinkedIn group. The division has had presentations on the topic for several years at conferences. The leader will be announced in InTech magazine. The ISA95 standard committee is working on updating the enterprise – control system communication to better support IIoT concepts.
Jim Cahill’s answer
One tremendous resource would be to read most of Jonas Berge’s LinkedIn blog posts. He writes about IIoT and digital communications and the impact they can have on reliability, safety, efficiency and production. I recommend you send him a connection request to see when he has new things to post. One other person to connect with includes Terrance O’Hanlon of ReliabilityWeb.com. Searching on the #IIoT hashtag in Twitter and LinkedIn is also a very good way to discover new articles and influencers in these areas.
Greg McMillan's answer
One of the things we need to be careful about is to make sure there are people with the expertise to use the data and associated software, such as data analytics. There was a misrepresentation in a feature article that IIoT would make the automation engineer obsolete when in fact the opposite is true. We need more process control engineers besides process analytical technology and IIoT experts to make the most out of the data. The data by itself can be overwhelming as seen in the series of articles “Drowning in Data; Starving for Information": Part 1, Part 2, Part 3, and Part 4.
Process control engineers with a fundamental knowledge of the process and the automation system need to intelligently analyze and make the associated improvements in instrumentation, valves, setpoints, tuning, control strategies, and use of controller features whether PID or MPC. Often lacking is the recognition of the importance of dynamics in the process and particularly the automation system. The process inputs must be synchronized with the process outputs for continuous processes before true correlations can be identified.
Knowledge of process first principles is also needed to determine whether correlations are really cause and effect. While the solution would seem to be employing expert rules to the IIoT results, a word of caution here is that the attempts to develop and use real-time expert systems in the 1980s and 1990s were largely failures wasting an incredible amount of time and money. Deficiencies in conditions, interrelationships and knowledge in the rules of logic implemented plus lack of visibility of interplay between rules and ability to troubleshoot rules led to a lot of false alerts resulting in the systems being turned off and eventually abandoned.
Hunter Vegas' answer
There have been multiple "data revolutions" over the years, and I consider IIoT to be just another wave where new information is made available that wasn’t available before. Unfortunately the problem that bedeviled the previous data revolutions still remains today. More data is not necessarily useful unless the right information is delivered at the right time to a person who can act on it. In many cases the operators have too much information now – when something goes wrong they get 1000 alarms and have to wade through the noise to try to figure out what went wrong and how to fix it.
IIoT data can undoubtedly be useful, but it takes a huge amount of time and effort to create an interface than can effectively present that information and still more time and effort to keep it up. All too often management reads a few trendy articles and thinks IIoT is something you buy or install and savings should just appear. Unfortunately most fail to appreciate the effort required to implement such a system and keep it working and adding value. Usually money is spent, people celebrate the glorious new system, then it falls out of favor and use and gets eliminated a short time later.
ISA Mentor Program
The ISA Mentor Program enables young professionals to access the wisdom and expertise of seasoned ISA members, and offers veteran ISA professionals the chance to share their wisdom and make a difference in someone’s career. Click this link to learn more about the ISA Mentor Program.
As far as I know there aren’t any specific standards associated with IIoT. I do think that there are several skill sets that can you help you implement it:
- Knowledge the latest alarm standards will help you understand how to identify alarm information/data that IS useful and how to make sure the operators get the important information in a timely fashion and not get buried with useless alarm data that doesn’t matter.
- Knowledge of some of the new HMI design standards are useful to learn how to present the information in a meaningful way that lets the operator quickly understand a situation and correctly react to it.
- Knowledge of getting the information into the system. That particular topic will depend upon your particular control system and how data flows into it. It might come in via OPC, wireless, Hart, Modbus, Ethernet, or any number of other paths. Each communication type will have its own challenges and security issues that must be addressed.
- Knowledge of what matters to your plant. In an aging acid plant corrosion can be a big issue. If you can add a handful of small wireless pipe thickness gauges in a few key spots that might have significant value. If you have environmental problems and sumps located all over your facility it might be possible to add wireless analyzers to detect solvent spills and quickly react to them rather than having a spill hit the river outfall before you detect it. The key to all of this is to understand the plant’s ‘pain points’ and then determine a way to address it. IIoT may offer an answer or it may be as simple as retuning a controller or replacing a poorly specified control valve with a better one. Regardless, if calling it an "IIoT Project" gets you funding and you solve a problem then you are a hero regardless.
Additional Mentor Program Resources
See the ISA book 101 Tips for a Successful Automation Career that grew out of this Mentor Program to gain concise and practical advice. See the InTech magazine feature article Enabling new automation engineers for candid comments from some of the original program participants. See the Control Talk column How to effectively get engineering knowledge with the ISA Mentor Program protégée Keneisha Williams on the challenges faced by young engineers today, and the column How to succeed at career and project migration with protégé Bill Thomas on how to make the most out of yourself and your project. Providing discussion and answers besides Greg McMillan and co-founder of the program Hunter Vegas (project engineering manager at Wunderlich-Malec) are resources Mark Darby (principal consultant at CMiD Solutions), Brian Hrankowsky (consultant engineer at a major pharmaceutical company), Michel Ruel (executive director, engineering practice at BBA Inc.), Leah Ruder (director of global project engineering at the Midwest Engineering Center of Emerson Automation Solutions), Nick Sands (ISA Fellow and Manufacturing Technology Fellow at DuPont), Bart Propst (process control leader for the Ascend Performance Materials Chocolate Bayou plant), Angela Valdes (automation manager of the Toronto office for SNC-Lavalin), and Daniel Warren (senior instrumentation/electrical specialist at D.M.W. Instrumentation Consulting Services, Ltd.).
About the Author
Gregory K. McMillan, CAP, is a retired Senior Fellow from Solutia/Monsanto where he worked in engineering technology on process control improvement. Greg was also an affiliate professor for Washington University in Saint Louis. Greg is an ISA Fellow and received the ISA Kermit Fischer Environmental Award for pH control in 1991, the Control magazine Engineer of the Year award for the process industry in 1994, was inducted into the Control magazine Process Automation Hall of Fame in 2001, was honored by InTech magazine in 2003 as one of the most influential innovators in automation, and received the ISA Life Achievement Award in 2010. Greg is the author of numerous books on process control, including Advances in Reactor Measurement and Control and Essentials of Modern Measurements and Final Elements in the Process Industry. Greg has been the monthly "Control Talk" columnist for Control magazine since 2002. Presently, Greg is a part time modeling and control consultant in Technology for Process Simulation for Emerson Automation Solutions specializing in the use of the virtual plant for exploring new opportunities. He spends most of his time writing, teaching and leading the ISA Mentor Program he founded in 2011.