This post is an excerpt from the journal ISA Transactions. All ISA Transactions articles are free to ISA members, or can be purchased from Elsevier Press.
Abstract: The referenced quadrotor helicopter in this paper has a unique configuration. It is more complex than commonly used quadrotors because of its inaccurate parameters, unideal symmetrical structure and unknown nonlinear dynamics. A novel method was presented to handle its modeling and control problems in this paper, which adopts a MIMO RBF neural nets-based state-dependent ARX (RBF-ARX) model to represent its nonlinear dynamics, and then a MIMO RBF-ARX model-based global LQR controller is proposed to stabilize the quadrotor's attitude. By comparing with a physical model-based LQR controller and an ARX model-set-based gain scheduling LQR controller, superiority of the MIMO RBF-ARX model-based control approach was confirmed. This successful application verified the validity of the MIMO RBF-ARX modeling method to the quadrotor helicopter with complex nonlinearity.
Free Bonus! To read the full version of this ISA Transactions article, click here.
Enjoy this technical resource article? Join ISA and get free access to all ISA Transactions articles as well as a wealth of other technical content, plus professional networking and discounts on technical training, books, conferences, and professional certification.
Click here to join ... learn, advance, succeed!
2006-2018 Elsevier Science Ltd. All rights reserved.