ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

Position Control of a Servo-Hydraulic Rotary Actuator Via a Neurobiologically Motivated Algorithm

This post is an excerpt from the journal ISA Transactions.  All ISA Transactions articles are free to ISA members, or can be purchased from Elsevier Press.

identification-and-real-time-position-control-of-a-servo-hydraulic-rotary-actuator-by-means-of-a-neurobiologically-motivated-algorithm

Abstract: This paper presents a new intelligent approach for adaptive control of a nonlinear dynamic system. A modified version of the brain emotional learning based intelligent controller (BELBIC), a bio-inspired algorithm based upon a computational model of emotional learning which occurs in the amygdala, is utilized for position controlling a real laboratorial rotary electro-hydraulic servo (EHS) system. EHS systems are known to be nonlinear and non-smooth due to many factors such as leakage, friction, hysteresis, null shift, saturation, dead zone, and especially fluid flow expression through the servo valve. The large value of these factors can easily influence the control performance in the presence of a poor design. In this paper, a mathematical model of the EHS system is derived, and then the parameters of the model are identified using the recursive least squares method. In the next step, a BELBIC is designed based on this dynamic model and utilized to control the real laboratorial EHS system. To prove the effectiveness of the modified BELBIC’s online learning ability in reducing the overall tracking error, results have been compared to those obtained from an optimal PID controller, an auto-tuned fuzzy PI controller (ATFPIC), and a neural network predictive controller (NNPC) under similar circumstances. The results demonstrate not only excellent improvement in control action, but also less energy consumption.

 Free Bonus! To read the full version of this ISA Transactions article, click here.

Join ISA and get free access to all ISA Transactions articles as well as a wealth of other technical content, plus discounts on events, webinars, training & education courses, and professional certification.

Click here to join ... learn, advance, succeed!

2006 Elsevier Science Ltd. All rights reserved.


Related Posts

Ask the Automation Pros: Achieving the Best Feedforward Control

The following discussion is part of an occasional series, "Ask the Automation Pros," authored by Greg McM...
Greg McMillan Jan 17, 2025 7:00:00 AM

Methods Manufacturers Are Adopting to Enable a Scalable, Low-Cost IoT Connected Factory

Manufacturers are implementing scalable, low-cost IoT-connected factories using wireless sensor networks ...
Sunthar Subramanian Jan 14, 2025 7:00:00 AM

The Flaws of Flow Meters: Part 2

Introduction Pipelines in every process industry are outfitted with flow meters to detect the actual amou...
Abhishek Sharma Jan 10, 2025 7:00:00 AM