ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

Fault Detection in the Feed Water Treatment Process for Boiler-Turbine Power Generation [technical]

 

This post is an excerpt from the journal ISA Transactions. All ISA Transactions articles are free to ISA members, or can be purchased from Elsevier Press.

 

 

 

Abstract: Feed water treatment process (FWTP) is an essential part of utility boilers; and fault detection is expected for its reliability improvement. Classical principal component analysis (PCA) has been applied to FWTPs in our previous work; however, the noises of T2 and SPE statistics result in false detections and missed detections. In this paper, Wavelet denoise (WD) is combined with PCA to form a new algorithm, (PCA- WD), where WD is intentionally employed to deal with the noises. The parameter selection of PCA-WD is further formulated as an optimization problem; and PSO is employed for optimization solution. A FWTP, sustaining two 1000 MW generation units in a coal-fired power plant, is taken as a study case. Its operation data is collected for following verification study. The results show that the optimized WD is effective to restrain the noises of T2 and SPE statistics, so as to improve the performance of PCA-WD algorithm. And, the parameter optimization enables PCA-WD to get its optimal parameters in an auto- matic way rather than on individual experience. The optimized PCA-WD is further compared with classical PCA and sliding window PCA (SWPCA), in terms of four cases as bias fault, drift fault, broken line fault and normal condition, respectively. The advantages of the optimized PCA-WD, against classical PCA and SWPCA, is finally convinced with the results.

Free Bonus! To read the full version of this ISA Transactions article, click here.

Enjoy this technical resource article? Join ISA and get free access to all ISA Transactions articles as well as a wealth of other technical content, plus professional networking and discounts on technical training, books, conferences, and professional certification.

Click here to join ISA ... learn, advance, succeed!

2006-2019 Elsevier Science Ltd. All rights reserved.


Related Posts

Ask the Automation Pros: Achieving the Best Feedforward Control

The following discussion is part of an occasional series, "Ask the Automation Pros," authored by Greg McM...
Greg McMillan Jan 17, 2025 7:00:00 AM

Methods Manufacturers Are Adopting to Enable a Scalable, Low-Cost IoT Connected Factory

Manufacturers are implementing scalable, low-cost IoT-connected factories using wireless sensor networks ...
Sunthar Subramanian Jan 14, 2025 7:00:00 AM

The Flaws of Flow Meters: Part 2

Introduction Pipelines in every process industry are outfitted with flow meters to detect the actual amou...
Abhishek Sharma Jan 10, 2025 7:00:00 AM