ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

Eliminate Deadtime with Mentoring and Social Media

 

The following technical discussion is part of an occasional series showcasing the ISA Mentor Program, authored by Greg McMillan, industry consultant, author of numerous process control books, 2010 ISA Life Achievement Award recipient and retired Senior Fellow from Solutia Inc. (now Eastman Chemical). Greg will be posting questions and responses from the ISA Mentor Program, with contributions from program participants.

 

Universities teach you first principles and math to take off in a technical career. However, a launch pad is not much good without the launch vehicle. Proficiency in automation depends upon "learning on the job." It is generally acknowledged that it takes about five years before an automation engineer is productive and ready to be the plant area or project lead.

 

So what can you do to cut this deadtime out of an automation career and avoid the worst-case scenario of failure to launch? To understand what has and could be done consider what accelerated my development. I was fortunate in going to work for Monsanto, who at the time was a leader in modeling and control with the likes of Professor Emeritus Dr. James Fair (University of Texas), Dr. Ted Williams (Purdue), and Automation Hall of Famers Bob Otto, Vernon Trevathan, and Terry Tolliver, and a whole host of top-notch designers. The sequence of events and some memories from the school of hard knocks exemplify the progression of a career.

Years 1-2

  1. Attended nine-week internal electrical and instrument (E&I) school and lab. Learned principles, calibration, and maintenance of instrumentation and valves.
  2. Moved to the Nitro WV plant to be E&I field construction supervisor, where unfortunately the plant technicians stayed out of the picture until the plant was commissioned and running great. Had to use pipefitters to checkout and calibrate the transmitters and valves.
  3. The first production unit had a nasty difficult rubber chemical batch process not fully known. The start-up was exciting to say the least.
  4. Learned piston valves should not be stored outside where the springs and cylinders would rust and seize despite the best lubricators, and these on-off valves made into throttle valves by slapping on a spool positioner and pulley-cable system were a joke.
  5. Learned instrument installation and controller tuning could make or break a control loop and working with a good process engineer was essential. Fortunately, a great instrument designer guided me remotely and then onsite for start-up.
  6. Continued on to start up several production units in the next year with such endearing chemicals as acrolein and hydrogen cyanide.

Years 3-4

  1. Moved to help start up a plant in Saint Louis whose reaction area was rebuilt after blowing up.
  2. Returned to headquarters and became the lead design engineer for a new plant with a catalyst carried in wheel barrels with shock absorbers because one bump would cause an explosion.
  3. Learned to appreciate Cajun food and humor.
  4. The most experienced instrument engineer, Stan Weiner, was my mentor. Weiner and I became close friends and went on to author a series of humorous books, the classic being How to Become an Instrument Engineer, an automation book read and enjoyed by family and friends.

Years 5-7

  1. Moved to Cambridge, Mass., to be the lead E&I design engineer for the world's largest plant of a chemical intermediate at a Texas City plant with an incredibly progressive E&I department.
  2. After design was completed, moved to Galveston, Tex., to supervise an experienced contractor and two new engineers with interesting personalities in E&I construction and start-up.
  3. Realized I was not meant to be a supervisor.
  4. Learned the rule to not use positioners on fast loops, while theoretically pleasing, was a disaster in the field and that most of my attempts to save money caused problems.

After seven years mostly building and starting up plants, I took a job in engineering technology (ET). I got the job by doing a dynamic simulation of a compressor surge control system as an extracurricular activity. In ET, we were given by Dr. James Fair the freedom and funding to find and implement process control improvements (PCI). There were plenty of difficult applications particularly in compressor surge, furnace pressure, reactor temperature, and neutralizer pH control, my specialty. Often, PCI involved developing a dynamic simulation to fundamentally understand the problem and solution and going out on start-up to implement an improved control strategy. I had one of the best in modeling and control, Henry Chien, to guide me. I was also bold in directly contacting the best technical people behind the scene.

You cannot avoid the need to spend time in the field. However, knowledge can be accelerated by communicating with the "best," directly and through their publications.

 

About the Author
Gregory K. McMillan, CAP, is a retired Senior Fellow from Solutia/Monsanto where he worked in engineering technology on process control improvement. Greg was also an affiliate professor for Washington University in Saint Louis. Greg is an ISA Fellow and received the ISA Kermit Fischer Environmental Award for pH control in 1991, the Control magazine Engineer of the Year award for the process industry in 1994, was inducted into the Control magazine Process Automation Hall of Fame in 2001, was honored by InTech magazine in 2003 as one of the most influential innovators in automation, and received the ISA Life Achievement Award in 2010. Greg is the author of numerous books on process control, including Advances in Reactor Measurement and Control and Essentials of Modern Measurements and Final Elements in the Process Industry. Greg has been the monthly "Control Talk" columnist for Control magazine since 2002. Presently, Greg is a part time modeling and control consultant in Technology for Process Simulation for Emerson Automation Solutions specializing in the use of the virtual plant for exploring new opportunities. He spends most of his time writing, teaching and leading the ISA Mentor Program he founded in 2011.

 

Connect with Greg:

LinkedIn

 

A version of this article also was published at InTech magazine. 

 

Greg McMillan
Greg McMillan
Greg McMillan has more than 50 years of experience in industrial process automation, with an emphasis on the synergy of dynamic modeling and process control. He retired as a Senior Fellow from Solutia and a senior principal software engineer from Emerson Process Systems and Solutions. He was also an adjunct professor in the Washington University Saint Louis Chemical Engineering department from 2001 to 2004. Greg is the author of numerous ISA books and columns on process control, and he has been the monthly Control Talk columnist for Control magazine since 2002. He is the leader of the monthly ISA “Ask the Automation Pros” Q&A posts that began as a series of Mentor Program Q&A posts in 2014. He started and guided the ISA Standards and Practices committee on ISA-TR5.9-2023, PID Algorithms and Performance Technical Report, and he wrote “Annex A - Valve Response and Control Loop Performance, Sources, Consequences, Fixes, and Specifications” in ISA-TR75.25.02-2000 (R2023), Control Valve Response Measurement from Step Inputs. Greg’s achievements include the ISA Kermit Fischer Environmental Award for pH control in 1991, appointment to ISA Fellow in 1991, the Control magazine Engineer of the Year Award for the Process Industry in 1994, induction into the Control magazine Process Automation Hall of Fame in 2001, selection as one of InTech magazine’s 50 Most Influential Innovators in 2003, several ISA Raymond D. Molloy awards for bestselling books of the year, the ISA Life Achievement Award in 2010, the ISA Mentoring Excellence award in 2020, and the ISA Standards Achievement Award in 2023. He has a BS in engineering physics from Kansas University and an MS in control theory from Missouri University of Science and Technology, both with emphasis on industrial processes.

Books:

Advances in Reactor Measurement and Control
Good Tuning: A Pocket Guide, Fourth Edition
New Directions in Bioprocess Modeling and Control: Maximizing Process Analytical Technology Benefits, Second Edition
Essentials of Modern Measurements and Final Elements in the Process Industry: A Guide to Design, Configuration, Installation, and Maintenance
101 Tips for a Successful Automation Career
Advanced pH Measurement and Control: Digital Twin Synergy and Advances in Technology, Fourth Edition
The Funnier Side of Retirement for Engineers and People of the Technical Persuasion
The Life and Times of an Automation Professional - An Illustrated Guide
Advanced Temperature Measurement and Control, Second Edition
Models Unleashed: Virtual Plant and Model Predictive Control Applications

Related Posts

Embracing the Future of Energy Storage with AI-Driven Technologies

The world is becoming increasingly focused on renewable energy and reducing carbon footprints. As part of...
Rupali Salve Jan 3, 2025 7:00:00 AM

ISA's Top Blog Posts of 2024

In June 2024, six months ago, we took a look at the top-performing blog posts of the year on ISA Intercha...
Kara Phelps Dec 27, 2024 7:00:00 AM

Onward and Upward to 2025: Proud of a Great Year

As my year as president of the International Society of Automation (ISA) comes to a close, I wanted to ta...
Prabhu Soundarrajan Dec 20, 2024 10:00:00 AM