ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

Adaptive PI Controller for Voltage Regulation in Power Systems [technical]

This post is an excerpt from the journal ISA Transactions. All ISA Transactions articles are free to ISA members, or can be purchased from Elsevier Press.

 

 

Abstract: Static synchronous compensator (STATCOM) provides the means to improve quality and reliability of a power system as it has the functional capability to handle dynamic disturbances, such as transient stability and power oscillation damping as well as to providing voltage regulation. In this paper, a robust adaptive PI-based optimal fuzzy control strategy is proposed to control a STATCOM used in distribution systems. The proposed intelligent strategy is based on a combination of a new General Type-II Fuzzy Logic (GT2FL) with a simple heuristic algorithm named Teaching Learning Based Optimization (TLBO) Algorithm. The proposed framework optimally tunes parameters of a Proportional-Integral (PI) controller which, similar to most of other researchers regarding control of STATCOM, are in charge of controlling the device. The proposed controller guaranties robustness and stability against uncertainties caused by external disturbances or ever-changing nature of the power systems. The TLBO optimizes the parameters of the controller as well as the input and output membership functions. To validate the efficiency of the proposed controller, the obtained simulation results are compared with those of the two most recent researches applied in this field, namely, conventional Proportional Integral (PI) controller and Optimal Fuzzy PI (OFPI) controller. Results demonstrate the successfulness and effectiveness of the proposed online-TLBO General Type-2 Fuzzy PI (OGT2FPI) controller and its superiority over conventional approaches.

 Free Bonus! To read the full version of this ISA Transactions article, click here.

Enjoy this technical resource article? Join ISA and get free access to all ISA Transactions articles as well as a wealth of other technical content, plus professional networking and discounts on technical training, books, conferences, and professional certification.

Click here to join ... learn, advance, succeed!

2006-2018 Elsevier Science Ltd. All rights reserved.


Related Posts

IoT Solutions World Congress: Why Barcelona is the Place to Be in May

A century ago, automation solutions arrived to transform manual industrial tasks. This century, the digit...
Renee Bassett Apr 2, 2024 7:00:00 AM

3 Ways Industry 4.0 Can Upgrade Industrial Water Treatment Methods

Industrial water treatment methods must evolve to remain relevant and efficient. Many decision-makers hav...
Emily Newton Mar 12, 2024 7:38:26 PM

ISA Business Academy: A Mini-MBA For Automation Industry Leaders

The ISA Business Academy is a 10-week fully digital program beginning 28 March for both current and aspir...
Ashley Ragan Mar 11, 2024 10:08:24 AM