ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

Murphy's Law Is Alive and Well in Industrial Processes

 

The following tip is from the ISA book by Greg McMillan and Hunter Vegas titled 101 Tips for a Successful Automation Career, inspired by the ISA Mentor Program. This is Tip #23, and was written by Hunter.

 

We all know Murphy’s famous law, “If anything can go wrong, it will.” I have to believe that Murphy was an automation engineer because I have encountered his law in action on every project I have ever worked on.

I have sat in HAZOPs where the group wanted to discount a scenario because it involved two simultaneous failures. I have also worked in a chemical plant that encountered FIVE simultaneous failures, blew up a vent line, and narrowly missed injuring an operator. Equipment breaks, and people make mistakes. Anticipate it, and design for it.

 

Concept: Simple systems work reliably. Complicated systems find new and interesting ways to fail. Whenever possible go for the simplest, most robust solution. As an automation engineer, the KISS concept (Keep It Simple Stupid) should be your mantra.

Whenever possible go for the simplest, most robust solution.

Details: Automation engineers love to create gloriously complex solutions. With so many computers and gadgets available, it is hard NOT to want to incorporate the latest and greatest into a design. However, the true purpose of automation is to control the process. Sometimes it takes a multivariable predictive control model to do that, but many times it can be done with a float switch and a solenoid. Try not to complicate a solution any more than necessary. When you are designing an emergency system to dump a quench chemical into a reactor, consider using gravity rather than special pumps and other equipment. Gravity always works (at least on planet Earth), while pumps and/or electricity can fail—especially under emergency conditions.

Anticipating every failure is difficult, but you must make every effort. What happens if the operator presses the wrong button? What happens if no button is pressed at all? If power is lost, might the instrument air and cooling water systems fail as well? What about steam and nitrogen? What are the ramifications of these multiple failures?

When you are designing a control panel, consider using dual 24VDC power supplies. Feed one with a UPS circuit and the other with a non-UPS circuit. Despite what their name might imply, an uninterruptable power supply becomes an Interruptible Power Supply more often than not. Having dual feeds can allow a control panel to continue operating despite the failure.

Software design is particularly tricky because there are so many paths that the logic can traverse. Operators are forever using the equipment in ways that were never intended and if the software is not designed to handle it, the program can hang in unexpected places. During testing try hitting the wrong buttons and try to force the program to step through the sequence in a different way to see what happens. While this will drive the programmers crazy, the resulting system will be much more robust as a result. Finding and resolving problems in testing is always better than discovering them on startup!

 

Watch-Outs: Never allow the final software quality control testing to be implemented by the same person who programmed it. A different person is much more likely to hit the sequences in a different way or throw the system a curve that the programmer had not anticipated. Avoid the temptation to use exotic controls and programming to patch a poorly designed process. You can program around poor mechanical designs, but the project will be more stable if the fundamental problems are resolved.

Exceptions: Sometimes a HAZOP group can lump a series of totally improbable scenarios together and reach outlandish conclusions. However, there ARE certain scenarios that can create a cascade affect. (A loss of power might trip the steam system and take out the cooling water supplies as well.)

Insight: Safety interlock calculations include a testing interval and incorporate the failure modes into the calculations for a very good reason. Untested interlocks have caused hundreds (and probably thousands) of accidents when they failed to perform their function. Be particularly wary of interlocks that involve multiple instruments and/or devices to sense a failure. The probability of failure on demand will be very high.

Rule of Thumb: If you are given an option, always choose the simpler solution. When you are designing a system, do not consider operator error and equipment failure to be isolated and unlikely events. They will occur … and usually at the worst time possible.

 

About the Author
Gregory K. McMillan, CAP, is a retired Senior Fellow from Solutia/Monsanto where he worked in engineering technology on process control improvement. Greg was also an affiliate professor for Washington University in Saint Louis. Greg is an ISA Fellow and received the ISA Kermit Fischer Environmental Award for pH control in 1991, the Control magazine Engineer of the Year award for the process industry in 1994, was inducted into the Control magazine Process Automation Hall of Fame in 2001, was honored by InTech magazine in 2003 as one of the most influential innovators in automation, and received the ISA Life Achievement Award in 2010. Greg is the author of numerous books on process control, including Advances in Reactor Measurement and Control and Essentials of Modern Measurements and Final Elements in the Process Industry. Greg has been the monthly "Control Talk" columnist for Control magazine since 2002. Presently, Greg is a part time modeling and control consultant in Technology for Process Simulation for Emerson Automation Solutions specializing in the use of the virtual plant for exploring new opportunities. He spends most of his time writing, teaching and leading the ISA Mentor Program he founded in 2011.

 

Connect with Greg
LinkedIn

 

Hunter Vegas, P.E., holds a B.S.E.E. degree from Tulane University and an M.B.A. from Wake Forest University. His job titles have included instrument engineer, production engineer, instrumentation group leader, principal automation engineer, and unit production manager. In 2001, he joined Avid Solutions, Inc., as an engineering manager and lead project engineer, where he works today. Hunter has executed nearly 2,000 instrumentation and control projects over his career, with budgets ranging from a few thousand to millions of dollars. He is proficient in field instrumentation sizing and selection, safety interlock design, electrical design, advanced control strategy, and numerous control system hardware and software platforms.

 

Connect with Hunter
LinkedIn

 

Greg McMillan
Greg McMillan
Greg McMillan has more than 50 years of experience in industrial process automation, with an emphasis on the synergy of dynamic modeling and process control. He retired as a Senior Fellow from Solutia and a senior principal software engineer from Emerson Process Systems and Solutions. He was also an adjunct professor in the Washington University Saint Louis Chemical Engineering department from 2001 to 2004. Greg is the author of numerous ISA books and columns on process control, and he has been the monthly Control Talk columnist for Control magazine since 2002. He is the leader of the monthly ISA “Ask the Automation Pros” Q&A posts that began as a series of Mentor Program Q&A posts in 2014. He started and guided the ISA Standards and Practices committee on ISA-TR5.9-2023, PID Algorithms and Performance Technical Report, and he wrote “Annex A - Valve Response and Control Loop Performance, Sources, Consequences, Fixes, and Specifications” in ISA-TR75.25.02-2000 (R2023), Control Valve Response Measurement from Step Inputs. Greg’s achievements include the ISA Kermit Fischer Environmental Award for pH control in 1991, appointment to ISA Fellow in 1991, the Control magazine Engineer of the Year Award for the Process Industry in 1994, induction into the Control magazine Process Automation Hall of Fame in 2001, selection as one of InTech magazine’s 50 Most Influential Innovators in 2003, several ISA Raymond D. Molloy awards for bestselling books of the year, the ISA Life Achievement Award in 2010, the ISA Mentoring Excellence award in 2020, and the ISA Standards Achievement Award in 2023. He has a BS in engineering physics from Kansas University and an MS in control theory from Missouri University of Science and Technology, both with emphasis on industrial processes.

Books:

Advances in Reactor Measurement and Control
Good Tuning: A Pocket Guide, Fourth Edition
New Directions in Bioprocess Modeling and Control: Maximizing Process Analytical Technology Benefits, Second Edition
Essentials of Modern Measurements and Final Elements in the Process Industry: A Guide to Design, Configuration, Installation, and Maintenance
101 Tips for a Successful Automation Career
Advanced pH Measurement and Control: Digital Twin Synergy and Advances in Technology, Fourth Edition
The Funnier Side of Retirement for Engineers and People of the Technical Persuasion
The Life and Times of an Automation Professional - An Illustrated Guide
Advanced Temperature Measurement and Control, Second Edition
Models Unleashed: Virtual Plant and Model Predictive Control Applications

Related Posts

The Flaws of Flow Meters: Part 2

Introduction Pipelines in every process industry are outfitted with flow meters to detect the actual amou...
Abhishek Sharma Jan 10, 2025 7:00:00 AM

Trends in Facility Management in Operations to Watch in 2025

Facility management in operations is undergoing a transformative shift as technological advancements and ...
Helen Anderson Jan 7, 2025 7:00:00 AM

Embracing the Future of Energy Storage with AI-Driven Technologies

The world is becoming increasingly focused on renewable energy and reducing carbon footprints. As part of...
Rupali Salve Jan 3, 2025 7:00:00 AM