ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

How to Reduce Control Valve Noise

 

This post was authored by Hans D. Baumann, Ph.D., PE, author of Fluid Mechanics of Control Valves: How Valves Control Your Process and a world-renowned expert on control valve technology. To read a brief author Q&A plus download a free, 42-page excerpt from the book, click this link.

 

Understanding and reducing noise from control valves is an important consideration for process facilities, especially those close to residential areas. After years of working with this issue, I have  developed a simple, graphical method to estimate water noise.

The underlying algorithms were found based on fundamental laws of fluid mechanics and acoustics, which enable the calculation of the sound levels of turbulent or cavitating water, and thereby simplify the International Electrotechnical Commission (IEC) standard method, while at the same time improving accuracy. A simplified graphical method can be a handier alternative to a computerized method. Although this method, as exhibited, is valid only for water, it could be modified for other fluids as long as the specific gravity and sonic velocity are accounted for.

 

The results are three graphs (A, B, and C), which condense the equations of the underlying mathematics. The first graph, A, shows sound levels as a function of the given downstream pipe diameter either in inches or in millimeters and as a function of the relative flow capacity (Cv/D2). (D is in inches, or 0.0016 x d2 if d is given in mm). The graph also incorporates the pipe's transmission loss based on schedule 40 pipe (for schedule 80, see below.)

The next step is to consult graph B based on the absolute inlet pressure to the valve either in psia or bar absolute. Add the dB(A) numbers found to the numbers given in graph A and proceed to graph C.

 

To read a brief author Q&A plus download a free, 42-page excerpt from the Hans Baumann book, Fluid Mechanics of Control Valves, click this link.

 

Go to graph C. Before you can read the numbers, find the valve's pressure ratio, where X = (P1 - P2 / P1 - Pv), where P1 is the absolute inlet pressure, P2 the outlet pressure, and Pv the vapor pressure of water (0.4 psia or 0.03 bar absolute at 70°F). This graph incorporates both the turbulence (blue) as well as the cavitation (red) sound level components of water. First, consult your valve's catalog information to find the Xfz (incipient cavitation) factor for the chosen valve and valve travel. If unknown, check the table below for an approximate value. Take your pressure ratio factor X (see above) and multiply it by 10. Now go to the bottom of graph C. If X is smaller than Xfz, then go to the blue line and read the corresponding dB(A) values on the left. If X is larger than Xfz, go to the red lines (indicating you have cavitation) and read the dB(A) numbers corresponding to the red line based on your given Xfz number and intersecting with the 10X line.

Now add all dB(A) numbers from A, B, and C, and you will have the estimated sound level 1 meter from the pipe wall. This method is based on the mathematical equations shown in the resources and is considered accurate to within ±5 dB(A).

Here are some modifiers to note, if applicable:
If your pipe is schedule 80, add 4 dB. In case this is a rotary valve, add 3 dB to the total.
If your FL factor is different from 0.7, then add the following ∆FL numbers:

 

In cases where your fluid is something other than water, add the following factor
NL = 20log (1448/Ci fluid) + 15log (Þfluid / 998), where Cifluid = fluid speed of sound (ft/sec)
and þfluid = density of fluid (lbs/ft3).

 

 

 

 

 

For Additional Reference:

Baumann, Hans D., Fluid Mechanics of Control Valves.

A version of this article also was published at InTech magazine.

Hans D. Baumann
Hans D. Baumann
Hans D. Baumann, is a world-renowned expert on control valves. He is credited with more than 100 U.S. patents relating to valve control technology and has written eight books (among them the Control Valve Primer: A User's Guide) on the subject. He is: an Honorary Member of ISA, ASME, the Fluid Controls Institute, and the Spanish Chemical Engineering Society; a member of Sigma Xi; and an inductee of the Automation Control Hall of Fame. For many years, he represented the US at the IEC International Standards Committee on control valves. In 1977, he founded H. D. Baumann Assoc., Ltd., a manufacturer of control valves. The company was initially acquired by Fisher Instruments, and is now part of Emerson Process Management. During his career, Hans has served in numerous positions, including chief engineer at W. & T. Co., a German valve supplier; manager of research & development at Worthington S/A in France; director of engineering at Cashco; vice president at Masoneilan International, Inc.; and senior vice president of technology at Fisher Controls. Hans holds degrees from Case institute of Technology (now part of Case Western Reserve University) and Northeastern University, and earned a doctorate degree in mechanical engineering from Columbia Pacific University.

Related Posts

Ask the Automation Pros: Achieving the Best Cascade Control

The following discussion is part of an occasional series, "Ask the Automation Pros," authored by Greg McM...
Greg McMillan Dec 6, 2024 7:00:00 AM

ISA's Position Papers from 2024: Collect Them All

The International Society of Automation (ISA) frequently releases positions on global issues affecting th...
Kara Phelps Dec 3, 2024 7:00:00 AM

Integrated Control System (ICS) for H2 Gas Generation

Abstract "H2 gas" refers to hydrogen gas (H2), which can be used as a clean energy carrier, meaning it ca...
Ankeet Anil Kaji Nov 26, 2024 7:00:00 AM