Energy-based maintenance is a type of condition-based maintenance that monitors the performance of equipment during normal operation with the use of energy measurement. The measured energy is compared with a calculated standard to determine the deviation, which is a trigger point for maintenance action. While some other maintenance strategies such as preventive maintenance allows for scheduling of maintenance even when the equipment is still in good condition, this energy approach allows the equipment to operate for an extended period while the energy consumption is being monitored continuously. A deviation from the standard indicates a symptom of imminent fault. With this information, the maintenance team can identify defect(s) and fix them before they result in failure.
Furthermore, executing preventive maintenance when the equipment is still in good condition allows resources such as labor cost and spare parts to be wasted when they could have been more deployed at the point when the condition is about to deviate from baseline. The analogy of energy-based maintenance is shown below. The curve shows that as a failure starts manifesting at point E, the energy consumption deviates due to changes in condition such as pressure, temperature, and friction among others. If action is taken, then the equipment does not progress to point P, where it begins to deteriorate. Point F is the failure point if no action is taken.
Industrial equipment gets energy from various sources, which are then used to do work such as drive a load. The equipment consumes energy in the process, and the energy consumed is a function of load being handled by each equipment. For example, an industrial pump shown below is meant to transfer fluid from one vessel to another and will consume a certain amount of energy E over time T of operation. This energy is more if the quantity of fluid increases, and vice versa.
If, however, there is a change in these other conditions or on the load, there will be a change in energy band of the pump being driven by the pump. This change signifies a problem within the pump system, which, when addressed, will prevent a failure of the equipment.
Advantages of Energy Based Maintenance
Disadvantages of Energy-Based Maintenance
The figure below illustrates the concept explained above.
Process water (the blue line) at high temperature is received into a reservoir which is then transferred with a pump (P1) to a cooling tower, which has an extractor fan that moves air through from the lower side of it upwards. The water is atomized so that an extractor fan (Cf) can pass air through the fine droplets of water. The contact between ambient air and the water droplet creates the needed cooling. The principle of cooling is with an air heat exchanger. The cooled water returns to the reservoir and is returned to the process plant with a pump (P2). Some water is lost to the environment and it is replenished with an aquifer water pump (P3).
To do an energy-based predictive maintenance on the four pieces of equipment (P1, P2, P3 and Cf), an energy meter will be installed for each of these equipment, and data in the following table will be entered into a computerized maintenance management software that is linked with the energy meter via Internet of Things (IoT).
Actual Energy = P x T x % Load