ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

All Posts

Effects of Wireless Packet Loss in Industrial Process Control Systems [technical]

This post is an excerpt from the journal ISA Transactions. All ISA Transactions articles are free to ISA members, or can be purchased from Elsevier Press.


Abstract: Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100 percent reliable communications. The sensitivity of the controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as re-transmission scheduling, multi-path routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared.

Free Bonus! To read the full version of this ISA Transactions article, click here.

Enjoy this technical resource article? Join ISA and get free access to all ISA Transactions articles as well as a wealth of other technical content, plus professional networking and discounts on technical training, books, conferences, and professional certification.

Click here to join ISA ... learn, advance, succeed!

2006-2019 Elsevier Science Ltd. All rights reserved.


Related Posts

Newsweek Vantage Report on Cyber Risks to Critical Infrastructure: ISA's the Expert Partner

Newsweek Vantage recently published an independent report on cyber risks to critical infrastructure—and t...
Kara Phelps Mar 24, 2020 3:11:27 PM

Auto Manufacturers Could Build Ventilators: The Power of Standards in a Global Crisis

As COVID-19 shutters manufacturing plants in North America and around the world, GM, Ford, and Tesla are ...
Kara Phelps Mar 19, 2020 1:49:27 PM

Leveraging Technology to Work in the Age of Uncertainty

Globalization has been a very successful strategy for many businesses. Distributing the supply chain acro...
Contributing Author Mar 18, 2020 5:00:00 AM