ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

Are changes in pipeline pressure affecting your loop?

This guest post is authored by Greg McMillan.

In the ISA Automation Week Mentor Program, I am providing guidance for extremely talented individuals from Argentina, Brazil, Malaysia, Mexico, Saudi Arabia, and the USA. We will be sharing a question and the answers each week. If you would like to provide additional answers, please send them to Susan Colwell at ISA. The tenth question in the ISA Mentor program is from Danaca Jordan (USA):

“How can you tell if changing pressure in a pipeline is affecting your process control loop?”

While it is well known changes in pressure change the control valve flow, less recognized is the changes in the installed characteristic and the prevalence of pressure upsets. Liquid flow (unless there is flashing) through a control valve is proportional to the square root of the pressure drop across the valve. The installed characteristic changes as the ratio of the valve to total system drop changes. You can track down disturbances by finding what flow changed first (see “Tracking Down Disturbances”). If you don’t have a flow measurement for each control valve, it gets difficult. If there are multiple users of the stream, then a pressure change in the stream will cause coincident changes in the controller outputs of the users. If there is only one user of the stream with the pressure change, the first process controller output that starts to change was first affected by the stream pressure change either as a disturbance flow or manipulated flow. Different loop deadtimes can mess up this analysis depending upon disturbance type and path. Data analytics packages can determine correlations between process variables and flows but multivariate statistical process control assumes linear relationships and synchronization of inputs with outputs for continuous processes. Unmeasured disturbances, inputs that are valve positions (nonlinear installed characteristics) rather than flows, and process deadtime are problematic for applications in continuous operations. If you had wireless pressure transmitters, you could move them around to track down the source pressure changes. If you had secondary flow loops (see “Secondary Flow Loops Offer a Primary Advantage”, the question would go away because the flow loop would correct for the pressure change before it affected the primary process loop. Changes in stream temperature, composition, and density are also disturbances. If you don’t have measurements of these stream variables, you are relegated to identifying the first flow to be affected. Often a process controller changes a manipulated flow to counteract the stream changes. For ratioed flows (flow feedforward), the primary process controller adds a feedback correction for stream changes. Secondary flow loops are essential for flow feedforward.

Greg McMillan
Greg McMillan
Gregory K. McMillan, CAP, is a retired Senior Fellow from Solutia/Monsanto where he worked in engineering technology on process control improvement. Greg was also an affiliate professor for Washington University in Saint Louis. Greg is an ISA Fellow and received the ISA Kermit Fischer Environmental Award for pH control in 1991, the Control magazine Engineer of the Year award for the process industry in 1994, was inducted into the Control magazine Process Automation Hall of Fame in 2001, was honored by InTech magazine in 2003 as one of the most influential innovators in automation, and received the ISA Life Achievement Award in 2010. Greg is the author of numerous books on process control, including "New Directions in Bioprocess Modeling and Control Second Edition 2020" and "Advanced pH Measurement and Control Fourth Edition 2023." Greg has been the monthly "Control Talk" columnist for Control magazine since 2002. Greg has recently retired as a part-time modeling and control consultant in Technology for Process Simulation for Emerson Automation Solutions specializing in the use of the digital twin for exploring new opportunities. Greg received the ISA Mentoring Excellence Award in 2020 and the ISA Standards Achievement Award in 2023.

Related Posts

IoT Solutions World Congress: Why Barcelona is the Place to Be in May

A century ago, automation solutions arrived to transform manual industrial tasks. This century, the digit...
Renee Bassett Apr 2, 2024 7:00:00 AM

3 Ways Industry 4.0 Can Upgrade Industrial Water Treatment Methods

Industrial water treatment methods must evolve to remain relevant and efficient. Many decision-makers hav...
Emily Newton Mar 12, 2024 7:38:26 PM

ISA Business Academy: A Mini-MBA For Automation Industry Leaders

The ISA Business Academy is a 10-week fully digital program beginning 28 March for both current and aspir...
Ashley Ragan Mar 11, 2024 10:08:24 AM