ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

AutoQuiz: Why Must Voltage Be Reduced Along with Frequency in a Variable Frequency Speed Controller?

 

AutoQuiz is edited by Joel Don, ISA's social media community manager.

 

This automation industry quiz question comes from the ISA Certified Automation Professional (CAP) certification program. ISA CAP certification provides a non-biased, third-party, objective assessment and confirmation of an automation professional's skills. The CAP exam is focused on direction, definition, design, development/application, deployment, documentation, and support of systems, software, and equipment used in control systems, manufacturing information systems, systems integration, and operational consulting. Click this link for more information about the CAP program.

 

Why must voltage be reduced along with frequency in a variable frequency speed controller?

a) to let the motor cool off
b) because of capacitive reactance
c) to maintain the volt/hertz ratio
d) to keep the motor from over speeding
e) none of the above

 

Varying the frequency affects both the motor speed and the strength of the magnetic field. When the frequency is lowered (to obtain a slower motor speed), the magnetic field increases, and excessive heat is generated. When the frequency is increased (to obtain a higher motor speed), the magnetic field decreases, and lower torque is produced. In order to keep the magnetic flux constant, the V/Hz ratio must remain constant. This keeps torque production stable, regardless of frequency.

The correct answer is C, "to maintain the volt/hertz ratio.” To maintain a constant (rated) flux density, the applied voltage must also be changed in the same proportion as the frequency (per Faraday’s law).

ReferenceNicholas Sands, P.E., CAP and Ian Verhappen, P.Eng., CAP.A Guide to the Automation Body of Knowledge. To read a brief Q&A with the authors, plus download a free 116-page excerpt from the book, click this link.

 

About the Editor
Joel Don is the community manager for ISA and is an independent content marketing, social media and public relations consultant. Prior to his work in marketing and PR, Joel served as an editor for regional newspapers and national magazines throughout the U.S. He earned a master's degree from the Medill School at Northwestern University with a focus on science, engineering and biomedical marketing communications, and a bachelor of science degree from UC San Diego.

 

Connect with Joel
LinkedInTwitterEmail

 

 

Joel Don
Joel Don
Joel Don is an independent content marketing, social media and public relations consultant. Prior to his work in marketing and PR, Joel served as an editor for regional newspapers and national magazines throughout the U.S. He earned a master's degree from the Medill School at Northwestern University with a focus on science, engineering and biomedical marketing communications, and a bachelor of science degree from UC San Diego.

Related Posts

ISA: Growing Stronger Together for a Brighter Future

As a part of the International Society of Automation (ISA) community—I see firsthand how our Society need...
Eddie Habibi Feb 29, 2024 9:46:56 AM

Is AI the Key to Unlocking Procurement Cost Savings?

As more people experiment with using artificial intelligence (AI) for real-life use cases, many wonder if...
Emily Newton Feb 27, 2024 10:15:02 AM

My ISA Journey

My ISA journey thus far has been one ripe with growth and knowledge. I’m lucky to say it has been one of ...
Prabhu Soundarrajan Feb 22, 2024 12:12:00 PM