ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

This blog covers numerous topics on industrial automation such as operations & management, continuous & batch processing, connectivity, manufacturing & machine control, and Industry 4.0.

The material and information contained on this website is for general information purposes only. ISA blog posts may be authored by ISA staff and guest authors from the automation community. Views and opinions expressed by a guest author are solely their own, and do not necessarily represent those of ISA. Posts made by guest authors have been subject to peer review.

All Posts

AutoQuiz: Unique Feature of a Pneumatic Differential Pressure Sensor/Transmitter

 

AutoQuiz is edited by Joel Don, ISA's social media community manager.

 

This automation industry quiz question comes from the ISA Certified Control Systems Technician (CCST) program. Certified Control System Technicians calibrate, document, troubleshoot, and repair/replace instrumentation for systems that measure and control level, temperature, pressure, flow, and other process variables. Click this link for more information about the CCST program.

 

 

Which of the following features is unique to a pneumatic differential pressure sensor/transmitter?

a) high pressure inlet
b) d/p cell diaphragm
c) low pressure inlet
d) feedback bellows
e) all of the above

 

As the bellows expands, it draws the nozzle away from the baffle. There is a balance that is achieved by matching the motion of the baffle with the motion of the nozzle. This balance keeps the distance between the baffle and nozzle, and, hence, the output pressure, constant for a constant input pressure. Only pneumatic differential pressure transmitters have this feature. There are other classes of devices, such as electro-pneumatic relays (I/P transducers) that also use this principle.

The correct answer is D, feedback bellows. In a pneumatic transmitter, the nozzle faces a baffle, so, as the measured pressure increases, the baffle moves toward the nozzle. This causes the backpressure within the nozzle to rise. The rising pressure is amplified by a pneumatic relay, with the output pressure applied to both the feedback bellows and to the sensor output port.

Reference: Goettsche, L.D. (Editor), Maintenance of Instruments and Systems, 2nd Edition

 

 

About the Editor
Joel Don is the community manager for ISA and is an independent content marketing, social media and public relations consultant. Prior to his work in marketing and PR, Joel served as an editor for regional newspapers and national magazines throughout the U.S. He earned a master's degree from the Medill School at Northwestern University with a focus on science, engineering and biomedical marketing communications, and a bachelor of science degree from UC San Diego.

 

Connect with Joel
LinkedInTwitterEmail

 

 

Joel Don
Joel Don
Joel Don is an independent content marketing, social media and public relations consultant. Prior to his work in marketing and PR, Joel served as an editor for regional newspapers and national magazines throughout the U.S. He earned a master's degree from the Medill School at Northwestern University with a focus on science, engineering and biomedical marketing communications, and a bachelor of science degree from UC San Diego.

Related Posts

5 Ways Manufacturers Can Protect Their IP

Industry 4.0 is defined by the marriage of the digital and the physical, taking the form of smart factori...
Emily Newton Aug 16, 2022 5:30:00 AM

IDM Can Improve Plant Reliability and Reduce Downtime

There are hundreds of smart instruments including sensors and final control elements installed in medium-...
Bakhtiar Pour Ahmad Aug 12, 2022 5:30:00 AM

The Opportunities and Obstacles in Using Automation for PCB Assembly

Automation has revolutionized the printed circuit board (PCB) industry with enhanced product reliability ...
Suresh Patel Aug 9, 2022 5:30:00 AM