ISA Interchange

Welcome to the official blog of the International Society of Automation (ISA).

All Posts

AD Converters Quiz: convert an analog signal to a digital one

AD Converters are necessary to convert an analog signal to a digital one that our computers can understand. The output of an AD Converter is a binary number. Digital instruments most commonly use 12, 14 and 16-bit converters, although there are much higher bit converters available.

The following is a practice question from one of ISA’s classes:

1. Calculate the incremental steps for a 12-bit A/D converter

2. If the sensor connected to the A/D converter was ranged for 0-1000 F, what is the smallest increment of temperature that can be seen on the digital side of the A/D converter?

3.  If I wanted to control the temperature to within 0.1 F can I do this with a 12-bit A/D converter in the sensor module?

4. What effect would a 14-bit A/D have?

5. Can you think of further improvements?

  • Answer to 1.

LSB represents = 100% / 2^12 = 100%/4096 = 0.0244%

  • Answer to 2.

LSB (or smallest increment of temperature on the digital side):

= 1000 F / 2^12 = 1000 F/ 4096 = 0.244 F

  • A 12-bit A/D converter in the sensor module is not accurate enough.
  • A 14-bit A/D converter would give a resolution or LSB of :
  • = 1000  F / 2^14 = 1000  F / 16384 = 0.061  F
  • 14-bit A/D converter would be better for control to within 0.1 F, however a 16-bit A/D converter would be even better because the resolution would be 0.0153 F.

Some points to remember are that although a higher bit converter allows for highly accurate instruments, we want our test equipment that we use to calibrate them to be at least 4 times more accurate. So for example if we had a transmitter with an accuracy of .02% FS, then our test equipment would have to have an accuracy of .005% FS. Also if the AD Converter on the host system’s analog input card (when the transmitter’s digital signal is being converted to 4-20) is not equal or higher in bits then the transmitter’s, the resolution that you gained is lost.

Mark Weisner
Mark Weisner
Mark Weisner is a technical specialist at ISA.

Related Posts

What Is Functional Safety?

Functional safety focuses on the detection of a potentially dangerous condition and depends on automatic ...
Jennifer Infantino Halsey Apr 7, 2020 5:15:00 AM

Companies Ramp Up Production of N95 Masks in Response to COVID-19

COVID-19 has exponentially increased the need for N95 disposable masks in hospitals and medical facilitie...
Kara Phelps Apr 3, 2020 5:15:00 AM

Newsweek Vantage Report on Cyber Risks to Critical Infrastructure: ISA's the Expert Partner

Newsweek Vantage recently published an independent report on cyber risks to critical infrastructure—and t...
Kara Phelps Mar 24, 2020 3:11:27 PM