This is an excerpt from the September/October 2013 issue of InTech magazine by Harmik Begi, Gregory Bischoff and Josh Gangl of Amgen. To read the full article, please see the link at the bottom of this post.
With the historical success of blockbuster products, the biopharmaceutical industry has required large manufacturing capacity with single-product facilities built to produce large volumes of a single blockbuster drug. More recently, however, with the changing business and regulatory environment, facilities have to be more flexible and capable of producing multiple products. They need to have shorter production campaigns, facilitate faster
Furthermore, balancing capacity and efficiency across an organization’s manufacturing network, as well as producing clinical and commercial batches in the same facility for faster time to market, has introduced additional dimensions of flexibility. Therefore many single-product facilities have been converted to multiproduct use, and innovative companies have been leading the charge on flexibility.
Single-to-multiproduct continuum
As the industry transitions toward multiproduct and multipurpose manufacturing facilities, one major challenge lies in how to change the facilities built for a specific product. For discussion purposes, the following generalities about the manufacturing facilities can be made.
Manufacturing automation implications
Multiproduct facilities require flexible automation. Flexibility is measured in many ways and applies to all aspects of the automation system, including the batch software design and physical architecture. Ultimately, the measure of flexibility is cost of change. Higher cost of change is driven by increased complexity. Complex changes have higher resource demand, require more time, and inherently bring increased risk to existing operations. Therefore, a less flexible automation is less adaptable to multiple products.
Differing industries drive the types of change that are required between products; it is important to recognize how different products affect the automation platform. With biopharmaceutical processing, products rarely leverage all the existing process functionality and equipment, many times driving process or equipment changes between products. Therefore an adaptable automation system is a key factor in meeting the flexibility demands of the business.
The ISA-88 batch standard lays out a framework to meet multiproduct demands. It defines modular levels of a software structure for batch processes. It is cardinal not just to embrace the software structure outlined by the standard, but accurately defining (or "right sizing") where and how control is accomplished across the defined layers ultimately leads to meeting the flexibility demands.
The practices below are central principles of the central multiproduct goal: future new product introductions (NPIs) require only recipe changes.
Dedicated recipe(s) and corresponding documentation for each product-this gives the most flexibility, particularly in the more complex automated unit operations in the facility. It establishes a clean framework on a per product basis for all of the stages in the product's life cycle (see figure 2), as well as subsequent NPIs.
Simplify recipe variables and product changeover processes (i.e., recipe parameters/formulas)-minimize the number of variables, provide good context/naming for each of them, or provide an automated changeover process/recipe to avoid mistakes and ultimately to ensure product quality and data integrity.
Balance phase size and complexity according to process steps-a batch architecture best practice. Some facilities have very long and complex process-based phases, so struggle with how to simplify and drive complexities to the appropriate realm without affecting current validation and process steps. Another ideal is to reduce complexities such that day-to-day, or product-to-product, operations staff members do not require deep understanding of the batch configuration to achieve streamlined NPIs.
Good ISA-88 and operational design-ISA-88 by design is a much-needed framework and parameterization concept for batch processing across all industries, and as such is not overly prescriptive in the biopharmaceutical manufacturing space. One of the key enablers for many facilities and projects is an additional abstraction layer concept to be applied to the software framework. See figure 3 for a pictorial representation of the following layers.
Iterate operational requirements into design, within the above frameworks.
Provide product context for operations at all times. How does an operator know what is in each vessel? What is the state of each vessel or line (clean, dirty, sterilized, etc.)? This can be as simple as human-machine interface (HMI) design, but can also include manual or even electronic signage from the control system. Security can also be a challenge, especially with portability becoming more prevalent.
The following observations can be made from multiproduct conversion projects.
In addition to the best practices outlined previously, the following challenges need to be considered. Concurrent production considerations:
Develop a plan for maintaining per product recipes when making many products over time.
Develop a plan for how to handle product-specific parameters. Sometimes many parameters are necessary.
Balance process phase size and content.
Naming conventions need to be reconsidered and standardized. Product names should be confined to recipes (if a product name is embedded deeper, there will be confusion or worse). Equipment should not be named with any product context (no more "Protein A" naming, as the device may have more than that single purpose).
The following are additional lessons learned and applied practices of some of the design best practices and ideals outlined previously.
New facilities typically are not being purpose-built for single dedicated products today, and therefore would be best served by considering the aspects and lessons learned in converting from single-product to multiproduct facilities presented in the sections above. From a high level, it would be in the best interest of greenfield facilities to:
A key consideration in bioprocess facilities is the advancement of process technologies and their impact on automation and the overarching driver of enabling multiproduct capability. Multiple advances have driven these changes, including single-use technology and the concentrations of product produced at a given equipment scale. Both affect automation and need to be considered as facilities aim for multiproduct production.
Single-use technology performs process operations in disposable materials, i.e., sterilized bags and tubing. This eliminates the automated cleaning and steaming that is typically highly automated and often complex. Therefore, a simplification of the recipe structure is derived. The process operations still require thoughtful design between the equipment/process/product layers of the batch design-this aspect does not change.
Other paradigm challenges that arise with single-use technology are the operational models that play a key role in the automation recipe design. For example, with the high involvement of operations personnel establishing and monitoring unit-to-unit pathways via tubing, the batch design is simplified in some ways.
With higher concentrations of product material, equipment scales are reduced. It may no longer be necessary to use 20,000-liter tanks; 2,000 liters may suffice. As equipment size is reduced, a facility's ability to move or replace equipment becomes more achievable, driving an equipment portability requirement. While batch recipe design is rather agnostic to equipment scale or location, automation architecture will be affected. The ability to move or replace equipment is a consideration for the automation architecture. This drives controller software segmentation, controller locations, and I/O strategies (including bus technologies). An automation architecture that can accommodate equipment change with minimal burden will better adapt to multiproduct, where equipment changes are typical.
Drug product facilities are typically built for multiple products, but may have dedicated lines depending on the final drug delivery medium or other disparate dosing and packaging requirements. In either case, many of the drug substance manufacturing automation practices discussed above translate directly to the design of fill finish facilities. They provide the flexibility demonstrated by industry trends to be more nimble, flexible, and cost effective in introducing new products.
Additional trends underscore that similar pressures and requirements are being seen in fill finish facilities, with vials and syringes now being filled in the same lines. As original equipment manufacturers (OEMs) are typically more prevalent in this space, OEMs would benefit by adopting parameterized batch logic and other frameworks provided by ISA-88 and the practices highlighted above.
The evolution of the biopharmaceutical industry has necessitated the conversion of many facilities to multiproduct manufacturing. Automation is a key enabler for a facility to achieve multiproduct flexible operations. The best practices and considerations outlined in this article are a framework to make the transformation to or the initial establishment of multiproduct operations in the most cost-effective manner.
About the Authors
Harmik Begi, director of information systems at Amgen, has more than 22 years of experience in the biopharmaceutical and food/beverage industries.
Gregory Bischoff, principal IS automation engineer at Amgen, has 20 years of automation experience and is responsible for delivering the automation work stream for large-scale capital projects in a corporate role.
Josh Gangl, operations IS platform lead at Amgen, has more than 15 years of process engineering, process automation, and manufacturing information systems experience.