The following discussion is part of an occasional series, "Ask the Automation Pros," authored by Greg McMillan, industry consultant, author of numerous process control books, and 2010 ISA Life Achievement Award recipient. Program administrators will collect submitted questions and solicits responses from automation professionals. Past Q&A videos are available on the ISA YouTube channel. View the playlist here. You can read all posts from this series here.
Looking for additional career guidance, or to offer support to those new to automation? Sign up for the ISA Mentor Program.
Damien Hurley is a control and instrumentation (C&I) engineer for Fluor in the UK. He is currently involved in the detailed design phase of a project to build a new energy plant in an existing refinery in Scotland. His chief responsibility is C&I interface coordination with construction, the existing site C&I contractor, and the client.
What ideas and principles in your career have carried the most weight in your day-to-day working life?
Since we have such a wealth of knowledge available to us on the internet and in the literature, I think there's merit in knowing what fundamentals others have found important. "The wheat from the chaff," if you will! To get things rolling in this discussion, I offer some of my thoughts.
For what it's worth, I've given mine below, as an instrument engineer:
Only a few years into my automation career, I seem to have fallen on two important principles: understanding and patience.
I find that most old problems are not solved because they are not understood. If they were understood, then a solution could be determined. If the solution were determined, the cost of that solution could be estimated. Also, the opportunity or justification could then be determined with confidence. It is then fairly simple to decide whether the opportunity is enough to justify the resources required to implement the solution. Too often, a problem languishes because we don’t really understand what is wrong, how much it is hurting us, and/or how we can fix it.
The second principle I have learned is patience. When it comes to optimizing an old process, it often takes a lot longer to get the gain the understanding necessary, to convince the organization of the importance, and to get the resources and implement the solution. This can be very frustrating for a young engineer. If you keep plodding ahead and grow in understanding of your process and your tools, what more can you expect? Eventually good things start to happen.
That is really a broad topic. There are personal, professional, and technical considerations. With limited time, here are some thoughts.
Personal considerations:
Professional considerations:
Technical considerations:
Of course, understanding the business context and the appropriate technology are very important. But so is understanding yourself and others.
If there are n others, then within the human context, there are (n+1) times the number of biases that you have. Your way might undermine another’s agenda, and give them the motivation to invest energy to undermine your ideas. Everyone loses.
Your way might not be the best or only way—just the one that suits you. Understand the politics of other stakeholders in the human environment, and understand how your own needs and preferences might reject best solutions.
A few fundamental ideas and principles for me:
Why?
Field elements are not isolated islands in our processes, certainly not in our control and safety systems. We need to consider the whole physical and functional aspects of the loops in which they are inserted, and be aware of all other elements that affect them and with which they interact.
Non-field elements (both hardware and software) are a big part of the game. Take into consideration legacy, compatibility, interfacing requirements, network segmentation requirements, and general infrastructure.
The nature of the project at hand will also add aspects that need to be considered. Are you building a new system from scratch or extending an existing one? Are you upgrading or migrating?
For instance, in those systems being migrated, check the structure and form of the existing PID Functional Blocks. Are they supported by the process control library of the new systems? If not, make sure that the former is captured so that existing tuning parameter can be converted to fit the structure and form of the PID FBs of the future system (considering the process is not changing).
You don’t have to know everything. ISA provides technical papers on many topics, as well as training opportunities. Reach out to others—the department manager, senior engineers, vendors, or the internet (although be careful here, because outdated posts are generally never taken down)—if you need advice on a challenging application. Perseverance is a valuable trait for an I&C engineer. In the end, finding the right solution is more important than if you originally knew the answer.
Besides understanding the process, the process data provided for I&C device selection and sizing must be analyzed, clarified when questions exist, and even challenged if necessary.
Understand the selected control system(s) and the project I/O requirements as they relate to the I&C devices. Will HART variables be used? Will any fieldbuses (Foundation fieldbus, Profibus, ASIbus, and so on) be utilized? Will Ethernet be used for I/O and/or motor control?
The interfaces between the primary control system and vendor-supplied skids need to be addressed very early on in the design phase. Hard-wire I/O directly to devices or the communication link to an on-board I/O module or processor, either with or without a limited hard-wired I/O handshake.
Look for the things that can go wrong in the design and installation of field instrumentation, control valves, and variable frequency drives. This can be quite challenging because mistakes and problems are rarely publicized, let alone limitations. A lot of “what if” questions need to be asked as to operating conditions and installation details, particularly as to the effects of mixing, particles, flow and concentration profiles, coating, startups and shutdowns, rangeability, and drift—as well as impulse line plugging, freezing, vaporization, and changes in phase.
Realize the real rangeability of flow meters for your application is a lot less than stated, except for Coriolis flow meters. Recognize actual rangeability of control valves is a lot less than cited, except perhaps for globe valves with low friction packing, diaphragm actuators, and smart positioners with aggressive gain action. The best practices at the end of each subsection in the Process/Industrial Instruments and Controls Handbook Sixth Edition 2019 provide an idea of what can go wrong—and importantly, how to avoid the problem. The Control Talk columns “Prevent pressure transmitter problems” and “Your DP problems could be the result of improper use of purges, fills, capillaries, and seals” provide a lot of guidance on what can go wrong with our most common measurements.
For a dialog across the generations about plant operations and each generation's different ways of looking at problems, see the Control article “Process Automation Generations Talk to Each Other,” which can be particularly helpful since most of the extensive field expertise resides with older practitioners. The tips on the “The Good, the Bad, and the Ugly…” of various flow meters by Hunter Vegas in the ISA book 101 Tips for a Successful Automation Career succinctly point to things that can go wrong. A lot of the other tips also help you avoid mistakes and reinforce the advice given in the answers in this Mentor post.
Your thoughts are already on the right track.
A few basics:
Projects, new ideas, and optimization:
Have fun!
See the ISA book 101 Tips for a Successful Automation Career that grew out of this Mentor Program to gain concise and practical advice. See the Control Talk column "How to effectively get engineering knowledge" with the ISA Mentor Program protégée Keneisha Williams on the challenges faced by young engineers today, and the column "How to succeed at career and project migration" with protégé Bill Thomas on how to make the most out of yourself and your project. Providing discussion and answers besides Greg McMillan and co-founder of the program Hunter Vegas (project engineering manager at Wunderlich-Malec) are resources Mark Darby (principal consultant at CMiD Solutions), Brian Hrankowsky (consultant engineer at a major pharmaceutical company), Michel Ruel (executive director, engineering practice at BBA Inc.), Leah Ruder (director of global project engineering at the Midwest Engineering Center of Emerson Automation Solutions), Nick Sands (ISA Fellow and Manufacturing Technology Fellow at DuPont), Bart Propst (process control leader for the Ascend Performance Materials Chocolate Bayou plant), Angela Valdes (automation manager of the Toronto office for SNC-Lavalin), Daniel Warren (senior instrumentation/electrical specialist at D.M.W. Instrumentation Consulting Services, Ltd.), and Ryan Simpson (process analytics engineer at Eastman Chemical).